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Eleven approximate configuration-interaction wavefunctions for the ground state of helium are 
used to test the application of the integral electron cusp condition as a constraint. Our results indicate 
that, if the approximate wavefunction is flexible enough, the calculated electron density at the nucleus 
is improved when the cusp constraint is imposed. However, the expectation values ofr-Z and r-a do not 
change significantly. 

Um die Anwendung der integralen Bedingung fiir den Elektronen-cusp zu tiberpriifen, wurden 
zur Berechnung des Heliumgrundzustandes elf approximierte CI-Wellenfunktionen benutzt. Die 
Resuttate zeigen, dab bei geniigend flexibler Wellenfunktion die berechnete Elektronendichte am Ort 
des Kerns verbessert wird, wenn man dem System die cusp-Bedingung auferlegt. Die Erwartungs- 
werte fiir r-Z und r * ~indern sich jedoch nur unbedeutend. 

L'6tat fondamental d'H~lium +tait calcul6 avec once fonctions d 'onde IC approximatives en vue 
d'examiner l'application de la condition int6grale de cusp 61ectronique comme constraint. Les resultats 
montrent que avec cette constraint la densit6 61ectronique calcul6e au noyau est am61ior6e quand les 
fonctions d'onde sont assez flexible. Mais les valeurs expectatives pour r - 2  e t r  -1 se ne changent pas 
drastiques. 

1. Introduction 

In a recent paper  [1], Chong derived a set of integral coalescence conditions 
for exact wavefunctions. For  approximate wavefunctions, the electron and spin 
coalescence values were defined, and the use of the coalescence conditions as 
constraints was proposed. 

Let us consider the singlet ground state of an atom. For  the exact wavefunction, 
one has an electron cusp condition: 

where ~ = Z:(47r r 2)-1 6(rr (O/~ri) , 

= X(4rcr2) -1 3(ri) ,  

(1.1) 

(1.2) 
(1.3) 

7 = - Z ,  and Z is the atomic number. For  approximate wavefunctions, we define 
the electron cusp value F and electron density at the nucleus A by: 

/" = ( ~  I~1 7')/(7 ~ I~1 7~), (1.4) 
A = <~' I~1 ~}/<~' I 7'}. (1.S) 

Comparison of F with 7 shows how well Eq. (1.1) is satisfied by an approximate 
wavefunction. On the other hand, it was proposed [1] that a better value for A 
may be obtained if the approximate  wavefunction is constrained to satisfy 
Eq. (1.1). A simple constraint operator  is: 

cg = �89 + ~ , ) ,  (1.6) 

30* 
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where ~ = ~ - 7.~. (1.7) 

If an approximate wavefunction T satisfies 

C = O ,  (1.8) 

where C -- (~e I~1 ~e) ,  (1.9) 

then Eq. (1.1) is satisfied by T, and F = y. 
In this work, we study the application of the constraint in Eq. (i.8) by testing 

it on eleven approximate configuration-interaction wavefunctions for the ground 
state of helium. Since the satisfaction of the cusp condition may improve other 
properties which are sensitive to T near the nucleus, the expectation values of 
r -2 and r -1 (besides A) are also examined. 

2. Calculations and Results 

Free Variation 

The eleven approximate wavefunctions used in the present investigation are 
summarized in Table 1, the numeral subscript of each function signifying the 
number of configurations in that function. The orbital exponents, with the ex- 
ception of q~6, have been crudely optimized; the coefficients for the terms in each 
function are calculated by the usual variational method. 

Table 1. Configurations and orbital exponents  used. Each configuration (coeff icient omitted) represents a 
1S function. The  orbital exponents  refer to the Slater-type orbitals in the order they appear 

Function Configurations Orbital exponents 

q~3 ls  2 + l s2s  + 2s 2 2.348144, 1.661883 
(04 ls  2 + l s2s  + 2s z + 2p 2 2.251372, 1.627170, 2.479727 
~)6 a lS 2 + IS 2S + 2S 2 + IS 3S 1.908, 1.908, 1.908 

+ 2S 3S + 3S ~ 
r l s  2 + l s2s  + 2s 2 + l s3s  1.575, 1.843, 1.955, 2.475 

+ 2s3s + 3s z + 2p 2 

~P3 Is l s ' +  2s 2 + 2p 2 2.160322, 1.238738, 4.088269, 
2.472929 

tp4 ls is' + 2s 2 + 2s3s + 3s 2 1.739808, 1.354694, 3.365817, 
2.486403 

lp5 ~ ls is' + 2s 2 + 2s3s + 3s 2 + 2p 2 2.17621, 1.20152, 5.1, 5.1, 
2.47547 

~P7 ls ls '  + 2s 2 + 2s3s + 3s 2 1.929838, 1.310046, 3.380943 
+ 2s4s + 3s4s + 4s 2 2.532473, 2.880894 

~P8 Is ls'  + 2s 2 + 2s3s + 3s 2 1.887365, 1.333773, 3.3601 
+ 2s4s + 3s4s + 4s 2 + 2p 2 2.611557, 3.013778, 2.475619 

~o 3 ls l s ' +  l s " l s ' +  ls  "~ls v 1.148244, 2.417804, 1.360331, 
1.646279, 1.8741, 4.1535 

(P4 ls  ls '  + Is" l s "  + ls  'v ls  ~ + 2p 2 1.140704, 2.503618, 1.3596, 
1.726027, 1.8741, 4.1535, 2.469553 

" Taken from H. Shull and P. O. L6wdin: J. chem. Physics 30, 617 (1959). 
b Taken from D. P. Chong and M. L. Benston: J. chem. Physics 49, 1302 (1968). 
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Table 2. Results of free variation (in atomic units). The percent derivation of A from the exact value 
is given in parentheses 

F u n c t i o n  E a f , b  A r 

~03 - - 2 . 8 7 6 1 2 9  --1.97625 3.59342 (--0.758) 
~b 3 -2.877406 -1.99274 3.61341 (-0.206) 
~P4 -2.877864 -2.07110 3.69098 (+1.937) 
46 -2.878296 -2.00253 3.63099 (+0.280) 
~Pv -2.878371 -2.01147 3.65662 (+0.988) 
~04 -2.895655 -1.96899 3.57623 (-1.231) 
~P3 -2.896548 -2.12161 3.68579 (+1.793) 
~b 4 -2.896686 -1.94580 3.52533 (-2.638) 
~P5 -2.897142 -1.95168 3.61539 (-0.151) 
~P8 -2.897696 -2.01225 3.63465 (+0.381) 
q~v -2.897840 -1.98980 3.60150 (-0.535) 

Exact - 2.903724 d - 2  3.62085 d (0) 

" Energy. 
b Cusp value at the nucleus. 
c Electron density at the nucleus. 
d Ref. [2]. 

Table  2, the results of free-variat ional  calculat ions are presented. The entries 
are ar ranged in the order of decreasing energy E. The exact values for E and  A 
obta ined  by Pekeris [2] are inc luded in the table for comparison.  

Constrained Variation 

It  should be no ted  that  the opera tor  ~ in Eq. (1.7) is not  hermit ian.  The 
cons t ra in t  opera tor  cg, on  the other hand,  is hermi t ian  by definition. 

The two methods  of solving cons t ra ined  secular equations,  namely,  per- 
t u rba t ion  [3] and  paramet r iza t ion  [4], have been well developed. Used in con- 
junc t ion ,  the pe r tu rba t ion  approach  gives a value for the Lagrang ian  mult ipl ier  2, 
which becomes an  ini t ial  guess for the parameter  in the paramet r iza t ion  approach.  
In  practice, we find that, with the exception of ~b4, the value of 2 from pe r tu rba t ion  
is so good that  further pa ramet r i za t ion  becomes unnecessary.  

The rapid rate of convergence of the pe r tu rba t ion  series I is demons t ra ted  
by the following example of q57: 

2 = + 1.031756 x 10 -3 - 1.06279 x 10 5 

+ 1.1119 x 10 - 7 -  1.099 x 10 -9 

+9.41 x 10 - 1 2 -  6.07 x 10-14 + --- (2.1) 

= + 1.021239 x 10 -3 , 

AE = 3.749950 x 10 - s  - 1.855863 x 10 -5 

- 1.26147 x 10 -7 - 9.4319 x 10 -1~ 

- 6 . 7 9 0 9  x 10 -12 - 4 . 6 9 9  x 10 -14 (2.2) 

- 3 . 1 0 9  x 10 -16 q- .-- 

= 1.881378 x 10 -5 .  

i See Eqs. (19) and (22) of Ref. [4]. 
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When the value ofl.021239 x 10 . 3  is used for 2 in the parametrization method, 
the cusp constraint is satisfied to within 0.5 x 10 -7. 

The results of constrained-variational calculations on the eleven approximate 
wavefunctions are summarized in Table 3. The quantity AE is the sacrifice in 
energy when the cusp constraint is imposed; it can be seen to be insignificant. 
The last column A is the electron density at the nucleus, calculated with the con- 
strained wavefunction (see Discussion). 

Table 3. Results of constrained variation (in atomic units). The percent deviation of A from the exact value 
is given in parentheses 

Function 1032 105 A E a zl b 

q~3 + 1.392867 6.01 3.64996 (+0.804) 
,;b 3 + 6.209249 8.20 3.66617 (+1.252) 
~4 - 1.8374t5 23.76 3.58552 (--0.976) 
q~6 - 0.2876273 0.13 3.62446 (+0.100) 
~P7 - 0.0846074 0.18 3.64547 (+0.680) 
(P4 + 1.494586 8.28 3.54972 ( -  1.964) 
~P3 - 2.270682 50.18 3.58426 (-1.010) 
q~4 + 55.6501 562.5 3.94843 ( + 9.047) 
tP5 + 0.5008557 4.38 3.62460 (+0.104) 
~P8 - 0.07278035 0.16 3.62387 (+0.083) 
q~v + 1.021239 1 . 8 8  3.62639 (+0.153) 

a A E is the sacrifice in energy. 
b See footnote c, Table 2. 

3. Discussion 

Using twenty-five approximate wavefunctions (available in the literature) 
for the ground state of helium, Chong and Schrader [5] recently showed that 
there exists a strong statistical correlation between the accuracies of F and A. 
As can be seen from Table 2, our present free-variational results confirm their 
finding qualitatively. Our results also indicate that an approximate wavefunc- 
tion with a better energy does not necessarily give a better F or A, again in agree- 
ment with Chong and Schrader. 

In general, we find that the application of the cusp constraint has a tendency 
to overcorrect the deviation of A from the exact value. When the approximate 
function is not flexible enough, the value of A from the constrained wavefunction 
may even be worse than that from the free-variational function. The case of q~7 
is a typical example of this overcorrection. Table 4 shows the behavior of various 
quantities as the parameter 2 is varied in this case. However, the functions with 
more than four terms indicate that when the approximate wavefunction is flexible 
enough, the calculated value of A improves as one imposes the cusp constraint. 
Our best result appears in the case of ~P8 which is also the most flexible function 
of the eleven. 

As mentioned in the Introduction, the satisfaction of the cusp condition is 
expected to improve other properties which depend strongly on the wavefunction 
near the nucleus. For  this reason, we examine the expectation values of r -2 and 
r -1 for some of our more flexible wavefunctions. The expectation value of r -1 



Integral Electron Cusp Conditions as Constraints 435 

Table 4. Typical behavior of  various quantities as a function of 2 (as illustrated in the case of 47). 
The percent deviation of  d from the exact value is given in parentheses 

1032 105AE" 102C b F c A d 

0 0 3.672 1.98980 3.60150 (-0.535) 
0.2 0.7 2.959 1.99180 3.60633 (-0.401) 
0.4 1.2 2.243 1.99379 3.61118 (-0.267) 
0.6 1.6 1.524 1.99579 3.61606 (-0.132) 
0.8 1.8 0.802 1.99778 3.62095 (+0.003) 
1.02124 1.9 0 2.00000 3.62639 (+0.153) 

" See footnote a, Table 3. 
b C indicates how well the constraint is satisfied, see Eq. (1.8) 
~ See footnote b, Table 2. 
d See footnote c, Table 2. 

Table 5. Expectation values of r -z and r -1 for the more flexible wavefunctions 

Function Free Constrained 

( r  -2 )  ( r  -1) ( r  -2 )  (r71) 

46 12.0404 3.37208 12.3031 3.37153 
~7 12.1081 3.38438 12.0985 3.38389 
~8 12.0744 3.38402 12.0659 3.38367 
47 12.0100 3.37354 12.0451 3.37547 

Exact a 12.0341 3.37663 12.0341 3.37663 

Ref. [2]. 

is closely related to the diamagnetic contribution to the shielding constant o ~. 
The results, listed in Table 5, are somewhat disappointing. These results suggest 
that, in order to improve the expectation values of r -2 and r -1, some other con- 
straint must be used. 

In short, we have learned from this study" (a) that the wavefunction must be 
flexible enough in order to take advantage of the cusp constraint; and (b) that 
the cusp constraint has little effects on the expectation values of r -2 and r -1 ; 
but (c) that the calculated value of A improves when one impose the cusp con- 
straint on an approximate wavefunction with enough linear coefficients. 
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